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In this article, we study the function ∆∗(k, n), which we define as the smallest number

s of variables needed to guarantee that the equation
∑s

i=1 aix
k
i +

∑s
i=1 biy

n
i = 0 has

nontrivial solutions in each of the p-adic fields Qp, regardless of the rational integer

coefficients. This generalizes the Γ∗(k) function of Davenport & Lewis. In this article we

give a sharp upper bound for ∆∗(k, n) and compute its value for various choices of the

degrees.
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1. Introduction

Over the past 65 years, much study has been given to the problem of determining

when an additive homogeneous polynomial is guaranteed to have p-adic integral

zeros. Specifically, for a fixed prime p and degree k, one seeks to determine the

smallest number s which guarantees that any polynomial of the form

a1x
k
1 + a2x

k
2 + · · ·+ asx

k
s , (1.1)
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with integer coefficients, is guaranteed to have nontrivial p-adic integral zeros for

every prime p. We define Γ∗(k) to be this smallest such s. We then have

Γ∗(k) = max
p

Γ∗p(k),

where Γ∗p(k) is the smallest s such that (??) has nontrivial zeros in Zsp for that

specific prime p, where now the coefficients are allowed to be any p-adic (i.e., not

only rational) integers. One of the earliest results in this area (see [?]) is that

Γ∗(k) ≤ k2 + 1, with equality whenever k + 1 is prime. Much work has been done

to either find bounds on Γ∗(k) when k + 1 is composite (see for example [?,?,?,?])

or to find exact values of Γ∗(k) for various degrees k (see [?,?,?,?,?,?,?,?], among

others). More work has been done on the problem of solving systems of additive

polynomials.

In this article, we study a multiple degree version of this problem. Given two

(positive integer) degrees k and n, we seek the smallest number s which guarantees

that the equation

s∑
i=1

aix
k
i +

s∑
i=1

biy
n
i = 0

has nontrivial p-adic solutions for all primes p regardless of the rational integer

coefficients. We will write this number as ∆∗(k, n). In analogy with the single degree

problem, we define ∆∗p(k, n) to be the smallest number of variables which guarantees

p-adic solubility for the particular prime p. We then have

∆∗(k, n) = max
p

∆∗p(k, n).

The function ∆∗(k, n) has some interesting properties. For instance, when

gcd(k, n) = 1, only one variable of each degree is required. We prove this in our first

theorem.

Theorem 1.1. Suppose that gcd(k, n) = 1. Then ∆∗(k, n) = 1.
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When considering upper bounds on ∆∗(k, n), we trivially have

∆∗(k, n) ≤ min{Γ∗(k),Γ∗(n)} ≤ n2 + 1.

In fact, we can do (very) slightly better than this, as we show in Theorem ??.

Theorem 1.2. For all k, n, we have ∆∗(k, n) ≤ n2.

Obviously, this immediately leads to the possibly better bound

∆∗(k, n) ≤ min{k2, n2}.

In light of Theorem ??, it is perhaps surprising that Theorem ?? is in some sense

best possible, as there are infinitely many pairs of degrees for which ∆∗(k, n) = n2.

We prove this in Theorem ??.

Theorem 1.3. Let p be a prime, let n = p − 1, and let t be any integer such that

t ≥ p(p− 2). Then we have ∆∗p(tn, n) = n2, and consequently ∆∗(tn, n) = n2.

Noting that Γ∗(n) = n2 + 1 when n is one less than a prime, it seems natural

to make the following conjecture.

Conjecture 1.4. Suppose that n is any positive integer. For all sufficiently large

integers t, we have ∆∗(tn, n) = Γ∗(n)− 1.

The difficulty in proving this conjecture would likely be in dealing with degrees n

such that Γ∗(n) = Γ∗p(n) for a prime p with p|n. When p - n, a construction very

similar to the one given in the proof of Theorem ?? should suffice to show that

∆∗p(tn, n) = Γ∗p(n)− 1 for large enough values of t. This should work since in these

cases, polynomials of degree n in Γ∗p(n)−1 variables with no nontrivial p-adic zeros

can be constructed from polynomials in fewer variables which have no nontrivial

zeros modulo p. This phenomenon no longer occurs when p|n, and so it is less clear

what to do in that situation.
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In our final two theorems, we calculate some more values of ∆∗(k, n). First, we

calculate the value of ∆∗(k, 2) for all degrees k.

Theorem 1.5. We have

∆∗(k, 2) =


1 if k is odd

3 if k = 4

4 if k ≥ 6 and k is even.

In our last theorem, we calculate the value ∆∗(6, 4) = 7. The proof (and also the

proof that ∆∗(4, 2) = 3 in Theorem ??) shows some of the complexities that may

arise in calculating values of ∆∗(k, n). We also note that the results of Theorem

?? and Theorem ?? may lead one to conjecture that ∆∗(k, n) ≤ Γ∗(gcd(k, n)), and

this example shows that such a conjecture would be false.

Theorem 1.6. We have ∆∗(6, 4) = 7.

2. Preliminaries

In this section, we define the terms we will be using in our proofs and give some

preliminary lemmas that we will need. We first show that it is enough to consider

p-adic rational solutions of equations. In this lemma, and throughout the article, F

will represent the polynomial

F = a1x
k
1 + · · ·+ asx

k
s + b1y

n
1 + · · ·+ bsy

n
s , (2.1)

where k, n are distinct positive integers and the ai and bi are p-adic integers.

Lemma 2.1. Suppose that the equation F = 0 has a nontrivial solution in Q2s
p .

Then it has a nontrivial solution in Z2s
p . Moreover, if there is a nontrivial solution

in Z2s
p , then there is a solution in Z2s

p in which either some x-variable is not divisible

by pn/d or some y-variable is not divisible by pk/d, where d = gcd(k, n).

Proof. Note that for any x,y, we have

F (pn/dx, pk/dy) = pnk/dF (x,y).
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Hence, if F (x,y) = 0, then F (pn/dx, pk/dy) = 0. If (x,y) ∈ Q2s
p , then we can use

this fact repeatedly to “clear” any powers of p from the denominators of the vari-

ables, ultimately arriving at a p-adic integral zero of F .

For the second statement, if (x,y) ∈ Z2s
p is a nontrivial zero of F , then we

have F (p−n/dx, p−k/dy) = 0. As above, using this transformation repeatedly will

ultimately lead to non-integral zeros of F . In the last integral zero that we find by

this method, either at least one of the x-variables is not divisible by pn/d or else at

least one of the y-variables is not divisible by pk/d. This completes the proof of the

lemma.

We next present a “normalization” lemma, which allows us to assume that the

polynomial F has certain nice properties. This is essentially identical to [?, Lemma

2]. To state this lemma, we define the level of a variable as follows. If z is a variable

in F whose coefficient is divisible by pr, but not by pr+1, then we say that z is at

level r.

Lemma 2.2. Suppose that p is a prime. In the polynomial F , we may assume

without loss of generality that every variable is at a level which is less than its

degree. Moreover, if we write mk,i for the number of variables of degree k at level

i, and define mn,i similarly, then we may assume either that

mk,0 + · · ·+mk,i−1 ≥
is

k
for 1 ≤ i ≤ k

or that

mn,0 + · · ·+mn,i−1 ≥
is

n
for 1 ≤ i ≤ n.

Proof. We only briefly sketch a proof of this. Suppose first that there is a variable

x in F with coefficient a, and that pk|a. Then we can make a change of variables

of the form x′ = px to find a new form F ′ for which the power of p dividing

the coefficient of x′ is still positive, but smaller than the power of p dividing a.
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By Lemma ??, F ′ has a nontrivial p-adic integral zero if and only if F does. Using

such transformations repeatedly proves the first assertion of the lemma. The second

assertion follows immediately from [?, Lemma 2], after making a transformation of

the general form

F ′ =
1

pr
F (px1, . . . , pxi, xi+1, . . . , xs, py1, . . . , pyj , yj+1, . . . , ys), (2.2)

where r is as defined in [?, Lemma 2] and x1, . . . , xi, y1, . . . , yj are the variables at

levels less than r.

Remark 2.3. Note that we may assume that either of the displayed equations

in Lemma ?? holds, but we may not assume that they hold simultaneously. In

particular, we may either assume that there are at least s/k of the x-variables at

level 0, or that there are at least s/n of the y-variables at level 0, but we may not

assume that level 0 contains both s/k x-variables and s/n y-variables. It is possible

(although we will not do so here) to develop a normalization theory which gives

information about the total number of variables at different levels. For instance, we

can show that we may assume that there are at least (n+ k)s/nk variables in total

at level 0, but with this normalization we cannot make any assumptions about how

many of these are x-variables and how many are y-variables.

We will find p-adic zeros of F through the use of Hensel’s lemma. Therefore we

give a version of this lemma here.

Lemma 2.4. Suppose that p is a fixed prime and write k = pτkk0, where k0 is not

divisible by p. Define the number γk by

γk =


τk + 2 if p = 2 and τk ≥ 1

τk + 1 otherwise.

Let h be a positive integer. Suppose that we can solve the congruence F ≡ 0

(mod ph+τk) in such a way that a variable of degree k at level at most h is not

divisible by p. Then the solution of this congruence can be lifted to a p-adic integral

solution of F = 0.
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Of course, we can replace k by n in Lemma ?? if we wish. We will typically use this

lemma in the following fashion. Suppose that the part of F at some level ` is given

by

p`(a1x
k
1 + · · ·+ aux

k
u + b1y

n
1 + · · ·+ bvy

n
v ).

If we can solve the congruence

a1x
k
1 + · · ·+ aux

k
u + b1y

n
1 + · · ·+ bvy

n
v ≡ 0 (mod pτk) (2.3)

with some variable xi not divisible by p, then we can find a nontrivial p-adic zero

of F . In this case, we say that the solution of (??) is nonsingular at xi.

Our next four lemmas will be used to help us solve congruences. The first is the

well-known Cauchy-Davenport theorem and the next two have the same flavor. The

fourth is a very useful lemma due to Bovey allowing us to find zeros of polynomials

modulo a power of 2.

Lemma 2.5 (Cauchy-Davenport [?]). Let A,B be sets of residues modulo a

prime p. Write |S| for the number of elements in the set S, and define

A+B = {a+ b : a ∈ A and b ∈ B}.

Then we have

|A+B| ≥ min{p, |A|+ |B| − 1}.

Lemma 2.6 (Chowla-Mann-Straus [?, Theorem 3]). Let

a1a2 · · · at 6≡ 0 (mod p) and gcd(p− 1, k) <
p− 1

2
.

Then the expression a1x
k
1 + · · ·+atx

k
t either represents all residues modulo p or else

represents at least (2t− 1) p−1
gcd(p−1,k) + 1 residues modulo p.

Lemma 2.7 (Davenport-Lewis [?, Lemma 1]). Let p be a prime, let k divide

p− 1, and let a1a2 · · · at 6≡ 0 (mod p). Then if t ≤ k, the number of distinct residue

classes modulo p other than 0 represented by the expression a1x
k
1 + · · ·+ atx

k
t is at

least t(p− 1)/k.
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Lemma 2.8 (Bovey [?, Lemma 1]). Let ` be a positive integer and suppose

that for i = 0, . . . , `, we have Fi =
∑vi
j=1 aijxij with all the aij odd and with∑h−1

i=0 vi ≥ 2h for each h = 1, . . . , `. Then for any positive integer L > `, the ex-

pression
∑`
i=0 2iFi represents at least min

(∑`
i=0 vi, 2

L
)

different residues modulo

2L where the xij = 0 or 1 and with at least one of the x0j = 1.

While the above lemma is written specifically in terms of linear polynomials, it

is easily applied in our situation, as xk = xn = x when x ∈ {0, 1}.

Our final lemma will allow us to make certain desirable changes of variables

during our proofs.

Lemma 2.9. Let d = gcd(k, n) and suppose that `x ≡ `y (mod d). Then we can

make a change of variables to create a polynomial F ′ such the x-variables at level

`x of F and the y-variables at level `y of F end up at the same level in F ′.

Proof. Suppose without loss of generality that `x > `y. We can write `x = `y + dt

for some positive integer t. Moreover, we can write k = dk′ and n = dn′, where

gcd(k′, n′) = 1. We make our change of variables as follows. For every x-variable

at level `x in F , we set x = pux′ and for every y-variable at level `y of F , we set

y = pvy′. Then in F ′ the variables x′ appear at level `x + ku and the variables y′

appear at level `y+nv. Our goal is then to choose u and v such that `x+ku = `y+nv.

We can do this if and only if we can solve t+k′u = n′v. But this final equation must

have positive integer solutions since k′ and n′ are relatively prime. This completes

the proof of the lemma.

3. The Value of ∆∗(k, n) when gcd(k, n) = 1

In this section, we give the short proof of Theorem ??, that ∆∗(k, n) = 1 when

gcd(k, n) = 1. Suppose that p is a prime. We need to show that any equation

axk + byn = 0
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has a solution in Zp. Since gcd(k, n) = 1, Lemma ?? shows that we can make a

change of variables to obtain an equivalent equation

p`(a′xk + b′yn) = 0

where neither a′ nor b′ is divisible by p. By Lemma ?? and the subsequent discussion,

it suffices to find a nontrivial solution of

a′xk + b′yn ≡ 0 (mod p). (3.1)

Since gcd(k, n) = 1, at least one of k, n is not divisible by p, and hence any nontriv-

ial solution of (??) will be nonsingular in at least one of the variables. Multiplying

the entire congruence by (a′)−1 (mod p), we may assume that a′ = 1.

Suppose first that p 6= 2. Let g be a primitive root modulo p, and note that we

have −1 ≡ g(p−1)/2 (mod p). Suppose that b′ ≡ gr (mod p), and write x = gu and

y = gv. Then we can find a nontrivial solution of (??) if and only if we can find

integers u, v with ku−nv ≡ r+(p−1)/2 (mod p−1). However, since gcd(k, n) = 1,

we can even find u, v with ku − nv = r + (p − 1)/2. This completes the proof for

these primes.

If p = 2, then (??) is the congruence xk + yn ≡ 0 (mod 2), and one solution of

this is x = y = 1. Since at least one of the degrees must be odd, this solution is

nonsingular in at least one variable. Thus the proof is complete in this case as well.

Remark 3.1. We prove Theorem ?? via Hensel’s Lemma in order to deal with

values of the coefficients that are not rational integers. If we assume that a, b ∈ Z,

then we could give an even shorter proof by considering the prime factorizations of

a, b, xk, and yn.
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4. Upper Bounds for ∆∗(k, n)

In this section, we prove Theorem ??, that we always have ∆∗(k, n) ≤ n2. If n = 1,

then we are done by Theorem ??, so we assume that n ≥ 2. We begin by quickly

showing that ∆∗p(k, n) ≤ n2 except possibly in the case where n = p − 1 and the

case where n = 2 (with p arbitrary). This follows from a number of results already

present in the literature.

If n ≥ 13 is odd, then [?, Theorem 3] shows that Γ∗(n) ≤ (n2 + 1)/2. For other

odd values of n, we know that Γ∗(n) < n2 by results of Bierstedt [?] (for n = 7, 11),

Norton [?] (n = 5, 7, 9, 11), Dodson [?] (n = 9, 11), and Lewis [?] (n = 3). The

combined work of Gray [?] and Chowla [?] also gives the result for n = 5. In light

of the bound ∆∗(k, n) ≤ Γ∗(n), these results give us Theorem ?? for all odd n.

Suppose next that n is even and n ≥ 4. If p is an odd prime such that n 6= p− 1

and n 6= p(p − 1), then work of Brüdern & Robert (see the proofs of [?, Lemmas

3.4 and 3.5]) shows that Γ∗p(n) ≤ 1
2n

2 + 1. Moreover, if p is odd and n = p(p− 1),

then Godinho, et al. show [?, Theorem 1] that Γ∗p(n) = 1
2n

2
(

1 + 1
p

)
+ 1, which is

less than n2. Finally, if p = 2, then the main theorem of [?] gives an exact formula

for Γ∗2(n) which can be seen to be at most n2 whenever n ≥ 4. Again, in light of

the bound ∆∗(k, n) ≤ Γ∗(n), we see that Theorem ?? is true for these choices of n

and p.

We now treat the remaining cases. Suppose first that n = p − 1, where p is

an odd prime, and let s = n2. As indicated in Lemma ??, we may assume that

each variable of degree n is at level at most n − 1. If any level ` contains at least

n+ 1 variables of degree n, then Chevalley’s theorem allows us to find a nontrivial

solution of the congruence F ≡ 0 (mod p`+1) using only the variables of degree n

at level `, and we are done by Lemma ??. Otherwise, each of levels 0, 1, . . . , n − 1
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contains exactly n variables of degree n. Suppose that x is any variable of degree k.

Then we can make a change of variables of the general type (??) so that there are

n variables of degree n at the same level ` as x. If there are any variables of degree

k at level ` other than x, we set them equal to zero. Then the portion of F at this

level looks like

p`
(
axk + b1y

n
1 + · · ·+ bny

n
n

)
.

By Lemma ??, the expression b1y
n
1 + · · · + bny

n
n represents every nonzero residue

modulo p. Set x = 1 and choose y1, . . . , yn so that b1y
n
1 + · · ·+ bny

n
n ≡ −a (mod p).

We now have a nonsingular solution of F ≡ 0 (mod p`+1), which lifts to a p-adic

zero of F as noted above.

We now turn to the case when n = 2. If k is odd then we are done by Theo-

rem ??. Suppose that k is even and s = 4. We first treat the case when p is odd.

As before, by Lemma ?? we can assume that all the variables of degree 2 are at

level either 0 or 1, and that at least two of these variables are at level 0. By either

Lemma ?? or Lemma ??, any expression a1y
2
1 + a2y

2
2 with p - a1a2 represents every

nonzero residue modulo p. If there is any additional variable (of either degree) at

level 0, then we may set this variable equal to 1 and then use the two y-variables

to complete this to a solution of F ≡ 0 (mod p), which lifts to a p-adic zero of F .

Otherwise, there are two y-variables at level 0 and two more at level 1. Suppose

that there is an x-variable at level r. Choose r∗ ∈ {0, 1} so that r∗ ≡ r (mod 2).

By Lemma ??, we may make a change of variables of the form (??) to produce a

new polynomial F ′ such that the x-variable at level r and the y-variables at level

r∗ of F end up at the same level ` in F ′. Then with these three variables we can

nontrivially solve the congruence F ′ ≡ 0 (mod p`+1) as above, and this solution

lifts to a p-adic zero of F . This completes the proof in the case when n = 2 and p

is odd.
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Finally, we treat the case in which p = n = 2. Again, we may assume that

every variable in F is at a level less than its degree. If we can find a solution of

the congruence F ≡ 0 (mod 8) which uses only the degree 2 variables and in which

there is at least one variable at level 0 with an odd value, then this solution lifts to a

2-adic solution by Lemma ??. One can check that if there is no such solution, then

the degree 2 part of F , considered modulo 8, must look like one of the following five

possibilities (perhaps multiplied by an odd number or with the variables renamed):

y21 + y22 + y23 + y24

y21 + y22 + 2y23 + 2y24

y21 + y22 + 5y23 + 5y24

y21 + 3y22 + 2y23 + 6y24

y21 + 5y22 + 6y23 + 6y24 .

Note that each of these polynomials represents every nonzero residue modulo 8 with

at least one variable at level 0 equal to 1. Now, if necessary, make successive changes

of variables of the form

F ′ =
1

p2
F (x1, x2, x3, x4, 2y1, 2y2, 2y3, 2y4) (4.1)

until the resulting polynomial has a variable xi of degree k at level either 0 or 1,

and note that the degree 2 part of F ′ is identical to the degree 2 part of F . Then as

above, we can solve the congruence F ′ ≡ 0 (mod 8) with xi = 1 and at least one of

the y-variables at level 0 equal to 1. This solution lifts to a 2-adic zero of F ′. Since

F ′ has a nontrivial 2-adic zero, so does F , completing the proof of Theorem ??.

5. Large Values of ∆∗(k, n)

Now that we have shown that ∆∗(k, n) ≤ n2, we show that this upper bound can

actually be obtained by proving Theorem ??. To prove this theorem, it suffices to

give an example of a polynomial with n2 − 1 variables of each degree which has no
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nontrivial p-adic zeros. Our example is the following. As in the statement of the

theorem, let p be a prime, let n = p − 1, and let k = tn with t ≥ p(p − 2). Let

z = (z1, . . . , zn−1) be an (n− 1)-tuple of variables and let yi = (yi,1, . . . , yi,n) be an

n-tuple of variables. Define

Gz(z) = zn1 + zn2 + · · ·+ znn−1

and

Gy(yi) = yni,1 + yni,2 + · · ·+ yni,n.

Thus the only difference between Gz and Gy is that Gy contains one extra variable.

Then our polynomial is

F = Gz(z) +

n−1∑
i=1

piGy(yi) +

n2−1∑
i=1

p(i−1)nxki .

That is, we set

F = Gz(z) + pGy(y1) + p2Gy(y2) + · · ·+ pn−1Gy(yn−1)

+ xk1 + pnxk2 + p2nxk3 + · · ·+ pn
3−2nxkn2−1.

By Lemma ??, if the equation F = 0 has any nontrivial p-adic integral solutions,

then it has one with either some xi not divisible by p or some zi or yi,j not divisible

by pt. We will show that the congruence F ≡ 0 (mod pk) has no solutions satisfying

these conditions.

In order to solve the congruence F ≡ 0 (mod pk), we first need to solve

zn1 + · · ·+ znn−1 + xk1 ≡ 0 (mod p).

Since the only n-th and k-th powers modulo p are 0 and 1, the only solution of this

congruence is to have each of these variables divisible by p. Making the substitution

zi = pz′i, x1 = px′1, we see that the z-variables are moved to level n and x1 is moved

to level k. Thus x1 will no longer play a role in solving F ≡ 0 (mod pk). Using

similar logic to solve F ≡ 0 modulo p2, p3, . . . , pn, we see that each variable yi,j
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must be divisible by p. Hence we may make the change of variables yi,j = py′i,j .

These changes of variables result in the polynomial

F ′ = pnGz(z
′) +

n−1∑
i=1

pn+iGy(y′i) +

n2−1∑
i=2

p(i−1)nxki + pk(x′1)k.

We can now reason exactly as above (looking modulo pn+1, pn+2, . . . , p2n) to see

that each of the variables z′i, y
′
i,j , and x2 must be divisible by p. That is, each of

the variables zi and yi,j must be divisible by p2, while x1 and x2 must both be

divisible by p. Repeating this argument until we eventually study the congruence

F ≡ 0 (mod pk), we see that each of the variables zi and yi,j must be divisible by

pt and each of the variables xi must be divisible by p. This provides a contradiction,

showing that the only p-adic solution of F = 0 is the trivial solution.

This gives us ∆∗p(k, n) > n2 − 1 for this choice of p, n, k. Combined

with Theorem ??, we see that ∆∗p(k, n) = n2, and hence ∆∗(k, n) = n2.

Remark 5.1. This is indeed a maximal example, as adding one more variable of

each degree (or even just one more variable of degree n) will produce a polynomial

which does have nontrivial p-adic zeros. However, we note that we could add more

terms of the form xki , one at each level less than k which is a multiple of p− 1, and

still have a polynomial with only the trivial zero.

Remark 5.2. It would also be interesting to eliminate the condition that each

degree have an equal number of variables and study the function which returns the

least total number of variables that guarantees that F = 0 has nontrivial solutions.

This function would have properties different from those of ∆∗(k, n). For example,

its value would always be at least max{Γ∗(k),Γ∗(n)} due to the possibility that all
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the variables in F have the same degree.

6. The Value of ∆∗(k, 2)

In this section we give the proof of Theorem ??. If k is odd, then the result follows

immediately from Theorem ??. Moreover, if k = 2k0 with k0 ≥ 3, then Theorem

?? gives ∆∗(k, 2) = 4. Hence we need only to show that ∆∗(4, 2) = 3.

We begin the proof by showing that ∆∗p(4, 2) = 3 whenever p is odd. To see

this, we first find an example of a polynomial with s = 2 and no nontrivial p-adic

zeros. Let Q be any integer such that −Q is not a square modulo p. Then the

congruence y21 + Qy22 ≡ 0 (mod p) has no nontrivial solutions, and one can show

that the polynomial

px41 + p3x42 + y21 +Qy22

has no nontrivial p-adic zeros. We omit the proof of this, which is similar to the one

given in the previous section.

Now let s = 3. As before, Lemma ?? allows us to assume that each variable is at

a level smaller than its degree, and that at least two variables of degree 2 are at level

0. If all three quadratic variables are at level 0, then we are done by Chevalley’s

theorem and Lemma ??. Otherwise, after perhaps multiplying F by a constant, the

y-variables in F look like

y21 + b2y
2
2 + pb3y

2
3 ,

where p - b2b3. We may also assume that the congruence y21 + b2y
2
2 ≡ 0 (mod p) has

no nontrivial solutions, as any nontrivial solution would lift to a p-adic solution.

Now, the expression y21 +b2y
2
2 will represent all nonzero residues modulo p by either

Lemma ?? or Lemma ??. Hence if there is a variable x of degree 4 at level 0, we

may set x = 1 and extend this to a nonsingular solution of the congruence F ≡ 0

(mod p). Similarly, if there is a variable of degree 4 at level 2, then we can make a
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change of variables which moves y1 and y2 to level 2, after which the same argument

applies. Therefore we may assume that all of the x-variables are at levels 1 and 3.

In this case, either level 1 or level 3 contains at least two x-variables. If necessary,

we use Lemma ?? to make a change of variables which produces a polynomial F ′

such that these two x-variables and the y-variable at level 1 of F end up at the

same level ` in F ′. That is, the part of F ′ at level ` looks like

p`
(
a1x

4
1 + a2x

4
2 + b3y

2
3

)
,

where p - a1a2b3. (If F ′ has an additional variable at level `, we set it equal to 0.)

If p ≡ 3 (mod 4), then we have gcd(4, p− 1) = 2, and the set of 4th powers modulo

p is the same as the set of squares modulo p. Therefore as before we can solve the

congruence

a1x
4
1 + a2x

4
2 + b3y

2
3 ≡ 0 (mod p) (6.1)

nontrivially by Chevalley’s theorem, and this solution lifts to a p-adic solution. If

p ≡ 1 (mod 4) and p > 5, then a result [?, Theorem 7] of Chowla, Mann, & Straus

shows that the expression a2x
4
2 + b3y

2
3 represents every nonzero residue modulo p.

Hence we may set x1 = 1 and complete this to a nontrivial (and hence nonsingular)

solution of (??) as above.

Finally, suppose that p = 5 and consider the congruence (??). Again, any non-

trivial solution of this congruence will lead to a 5-adic zero of F . Dividing (??)

through by b3, we may assume that b3 = 1. If either of a1, a2 is congruent to 1 or

4 (mod 5), then we can get a nontrivial solution using that variable and y3. More-

over, if a1 + a2 ≡ 0 (mod 5), then setting (x1, x2, y3) = (1, 1, 0) gives a nontrivial

solution of (??). The only remaining possibilities are a1 = a2 = 2 and a1 = a2 = 3.

In the first case, (x1, x2, y3) = (1, 1, 1) is a nontrivial solution of (??), and in the

second case (x1, x2, y3) = (1, 1, 2) works. This completes the proof that ∆∗p(4, 2) = 3
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whenever p is odd.

It remains to consider ∆∗2(4, 2). Suppose that s = 3. As before, we may assume

that all the y-variables are at levels 0 and 1, and that all of the x-variables are at

levels 0, 1, 2, and 3. If necessary, we may make a change of variables of the form

(??) so that in addition to the y-variables, levels 0 and 1 together contain at least

two x-variables. Set the remaining x-variable equal to 0. Then we have

F = a1x
4
1 + a2x

4
2 + b1y

2
1 + b2y

2
2 + b3y

2
3 ,

where b1 and b2 are odd and none of the coefficients are divisible by 4. We show

that we can solve

F ≡ 0 (mod 8) (6.2)

with at least one of y1, y2 not divisible by 2. By multiplying (??) by a unit, we

may assume that b1 = 1, and hence that b2, b3 6= 7. We may also assume that if

b3 is at level 0, then b2 ≤ b3. With these assumptions, there are 12 possibilities for

the 3-tuple (b1, b2, b3). If we eliminate the ones such that (??) has a nonsingular

solution involving only the y-variables, then this 3-tuple must be one of

(1, 1, 1) (1, 3, 6)

(1, 1, 2) (1, 5, 5)

(1, 1, 5) (1, 5, 6).

(1, 3, 2)

Suppose that (b1, b2, b3) = (1, 5, 6). Then using only the y-variables, we can rep-

resent every nonzero residue modulo 8 nonsingularly (i.e., with at least one odd

variable at level 0) except for 2 and 4. Since a1 6= 4, we can solve (??) nonsingularly

using only x1 and the y-variables unless a1 = 6. Similarly, we can find a nonsingular

solution of (??) whenever a2 6= 6. Thus in this case we can solve (??) nonsingularly

except possibly for the congruence

6x41 + 6x42 + y21 + 5y22 + 6y23 ≡ 0 (mod 8).
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However, we can see that (x,y) = (1, 1, 1, 1, 1) is a nonsingular solution of this final

congruence. The other possible values for (b1, b2, b3) can be treated similarly, and we

omit the details. This shows that ∆∗2(4, 2) ≤ 3, completing the proof of Theorem ??.

7. The Value of ∆∗(6, 4)

Finally, we prove Theorem ??, that ∆∗(6, 4) = 7. First, consider the form

F = (x61 + 2x62) + 5(y41 + y42 + y43) + 52(x63 + 2x64) + 53(y44 + y45 + y46) + 54(x65 + 2x66).

In the same manner as we have before, we can show that F has no nontrivial 5-adic

zeros. This shows that ∆∗(6, 4) ≥ 7. Now we need to show that having seven vari-

ables of each degree guarantees p-adic solutions for all p.

Suppose that s = 7 and that every variable is at a level less than its degree. Note

that the x-variables now have degree 6 and the y-variables have degree 4. For now,

suppose that p ≥ 7. Then Lemma ?? shows that the expression b1y
4
1 + b2y

4
2 + b3y

4
3

(with p - b1b2b3) represents every nonzero residue modulo p. Therefore, if there is

a level with at least four y-variables, then we may set one of those variables equal

to 1 and use the other three to complete a nonsingular solution of an appropriate

congruence, and we are done. Hence, for these primes we may assume that every

level contains at most three y-variables.

Now suppose that some level ` does contain three y-variables. If there is any

x-variable at level `, then we can set it equal to 1 and proceed as above to find a

p-adic zero of F . Otherwise, every x-variable is at a level different from `. In fact

the x-variables must all be at levels of different parity from `, as otherwise we could

use Lemma ?? to create a level with an x-variable and three y-variables. Thus the

x-variables are distributed among only three levels, and so there must be a level

`′ containing at least three of them. Moreover, since each level has at most three
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y-variables, there must be a y-variable at a level of the same parity as `′. Using

Lemma ?? again, we may create a level with three x-variables and a y-variable.

If gcd(p − 1, 6) < p−1
2 , then by Lemma ?? the three x-variables represent at least

5
6 (p− 1) + 1 residues modulo p, and Lemma ?? shows that if we set the y-variable

to a nonzero value, then we represent at least

min

{
p,

(
5

6
(p− 1) + 1

)
+
p− 1

4
− 1

}
= min

{
p,

13

12
(p− 1)

}
> p− 1

residues modulo p. Since the number of residues represented must be an integer, we

see that zero is represented nontrivially, and hence nonsingularly. So we are done

in this case as well (provided that gcd(p− 1, 6) < (p− 1)/2).

Finally, we treat the case in which each level has at most two y-variables. In

this situation, there must be levels of both parities which contain two y-variables.

Since some level must contain two x-variables, we can make a change of variables to

create a level with two variables of each degree. By Lemma ??, the two y-variables

represent at least 3
4 (p−1) + 1 residues modulo p. Lemma ?? shows that adding one

x-variable allows us to represent at least 11
12 (p − 1) + 1 residues modulo p. Finally,

if we set the last x-variable to a nonzero value, then Lemma ?? shows that we may

represent at least

min

{
p,

13

12
(p− 1)

}
> p− 1

residues modulo p. As above, we see that we can nontrivially (and hence nonsingu-

larly) represent 0, and we are done.

The above work suffices to show that ∆∗p(6, 4) ≤ 7 for all primes except p =

2, 3, 5, 7, 13. We deal with these primes individually. Suppose first that p = 13. The

above proof works for this prime except for the situation in which there is a level

with three x-variables and one y-variable, so assume that this occurs. At this level,
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we need to solve a congruence of the form

a1x
6
1 + a2x

6
2 + a3x

6
3 + by4 ≡ 0 (mod 13), (7.1)

where 13 - a1a2a3b. Define

R = {a1x61 + a2x
6
2 + a3x

6
3 (mod 13)}

and

R′ = {a1x61 + a2x
6
2 + a3x

6
3 (mod 13) : xi ∈ {0, 1}}.

If |R′| < 8, then there is a residue in R′ which can be obtained in two different

ways, and this leads to a nontrivial solution of (??) by a well-known argument (see

for example the proof of [?, Lemma 2.2.1]). So we may assume that |R′| = 8, and

therefore that |R| ≥ 8. Note that R has the property that if a ∈ R then −a ∈ R.

Since the possible nonzero values of by4 are b, 3b, and 9b, if any of the residues

b,−b, 3b,−3b, 9b,−9b

are in R, then we can find a nontrivial solution of our congruence. But these residues

are distinct modulo 13, and hence at least one of them must be contained in R since

|R| ≥ 8. This completes the proof in this case, and therefore completes the proof

that ∆∗13(6, 4) ≤ 7.

Suppose now that p = 7 or p = 3. The same argument works for both of these

primes. As we have seen, if we have two y-variables at the same level, then these

terms represent every nonzero residue modulo p. Therefore, if some level contains

two y-variables and any additional variable, then one can find a nonsingular solution

of a congruence as before, and hence a p-adic zero of F . But as we have seen, there

must either be a level with three y-variables or (perhaps after a change of variables

of the form (??)) a level with two y-variables and two x-variables. Hence there are

p-adic zeros of F , and so ∆∗p(6, 4) ≤ 7 for these two primes.
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If p = 5, then a similar argument works. By Lemma ??, any expression of the

form a1x
6
1 + a2x

6
2 must represent all nonzero residues modulo 5. Hence if any level

contains two x-variables and any other variable, then one can find a nonsingular

solution of a congruence, and hence a 5-adic zero of F . Suppose that this does not

happen, even after any possible change of variables. Since at least one level ` must

contain two x-variables, the y-variables must be distributed among the two allow-

able levels with parity different from `. However, this means that there must be a

level `′ which has four y-variables, which represent all nonzero residues modulo 5

by Lemma ??. Since no level contains three x-variables, there must be an x-variable

at a level of the same parity as `′. Then we may make a change of variables so that

some level contains four y-variables and an x-variable. With these variables, we can

find a nonsingular solution of an appropriate congruence, and hence a 5-adic zero

of F . Therefore ∆∗5(6, 4) ≤ 7.

Finally, we deal with the case p = 2. This is the most difficult case. As always,

we assume that each variable is at a level lower than its degree. As in Section ??

write m6,i for the number of x-variables (of degree 6) at level i in F . By Lemma

??, we may assume that

m6,0 ≥ 2

m6,0 +m6,1 ≥ 3

m6,0 +m6,1 +m6,2 ≥ 4.

Suppose first that m6,1 ≥ 1 and m6,2 ≥ 1. Set two x-variables at level 0 equal to

1. This gives a solution of F ≡ 0 (mod 2). If it is not a solution of F ≡ 0 (mod 4),

then set one of the variables at level 1 equal to 1. This gives a solution of F ≡ 0

(mod 4). If it is not a solution of F ≡ 0 (mod 8), then we can solve this final con-

gruence by setting one of the variables at level 2 equal to 1. Then we have found a

nonsingular solution of F ≡ 0 (mod 8), which lifts to a 2-adic zero of F .
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We now need to treat the cases where m6,1 = 0 or m6,2 = 0. We begin with the

case in which m6,2 = 0. By Lemma ??, we have m6,0 ≥ 2 and m6,0 + m6,1 ≥ 4.

If there are y-variables at level 2, then Lemma ?? shows that we can use the x-

variables at levels 0 and 1 to solve the congruence F ≡ 0 (mod 4) with at least

one odd variable at level 0. If necessary, we can then use the variable at level 2

to complete this to a solution modulo 8, in which case we are done. If there are

y-variables at level 0, then the same argument works after the change of variables

F ′ = 1
26F (2x, 4y). Hence we may assume that all of the y-variables are at levels

1 and 3. One of these levels must contain at least four y-variables. If these four

y-variables are at level 1, then we have two x-variables at level 0 and at least eight

total variables at levels 0 and 1. By Lemma ??, we can use these variables to find

a nonsingular solution of the congruence F ≡ 0 (mod 8). If the four y-variables are

at level 3, then we can make the change of variables F ′ = F (2x, 2y). If there are

any y-variables at level 5 of F ′, we set them to 0 and then divide F ′ by 26. The

resulting polynomial has two x-variables at level 0 and at least eight total variables

at levels 0 and 1, so we may finish the proof as above. This completes the proof in

the case when m2 = 0.

Suppose instead that m6,2 ≥ 1 and m6,1 = 0. Then Lemma ?? guarantees that

m6,0 ≥ 3. If there is a y-variable at level 0, then Lemma ?? shows that we may

use the variables at level 0 to solve the congruence F ≡ 0 (mod 4). Note that

in this solution there must be at least one odd x-variable. If we actually have a

solution modulo 8, then we are done. Otherwise, we may extend this to a solu-

tion modulo 8 using a variable at level 2, and we are done. On the other hand,

suppose that there are no y-variables at level 0. If there is a y-variable at level

2, then after the change of variables F ′ = F (2x, 2y), the same argument works

(after perhaps setting some variables to 0 and dividing F ′ by 26). Hence we may

assume that all the y-variables are at levels 1 and 3. One of these levels must

contain at least four y-variables. If these variables are at level 1, then we can
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use the x-variables at level 0 and the y-variables at level 1 to solve the congru-

ence F ≡ 0 (mod 4) with the x-variables odd. If necessary, we can then use an

x-variable at level 2 to extend this to a nonsingular solution modulo 8. If the four

y-variables are at level 3, then the same argument works after the change of vari-

ables F ′ = F (2x, 2y) and possibly setting some variables equal to 0 and dividing F ′

by 26. This finishes the proof in this case, and completes the proof of Theorem ??.
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